
Clippard

NIV Series PTFE Media Isolation Valves

- · Low power consumption
- · Compact, lightweight design
- Bidirectional
- · Minimal dead volume
- · All wetted areas PTFE standard
- · Ideal for use with corrosive media
- · High cycle life
- · Fast response time
- · CE, RoHS Compliant
- · Low leak design
- Custom body, materials, threads and pressures available
- · Proudly Made in USA. ISO 9001

The **Clippard NIV Series Media Isolation Valve** is a solenoid-operated device that uses a flexible diaphragm to isolate the actuation mechanism from the fluid path. Media isolation valves are commonly used for a wide variety of applications, including those that require precise, repeatable dispensing of media for analytical instrumentation. All wetted areas of the valve are PTFE making this series ideal for use with corrosive media.

A unique feature of the NIV Series is the one-piece valve stem that functions as a sealing membrane while also supporting and centralizing the poppet in the seating area. This multifunctional poppet/diaphragm/stem results in a simplified design with fewer parts (only two for the 2-Way and three for the 3-Way), longer life and minimal dead volume. Choose from four orifice sizes available as 2-Way Normally-Closed, 2-Way Normally-Open, or 3-Way Selector/Diverter. Special configurations available by request.

Industries and applications that commonly use these types of valves to isolate gas or liquid include: drug dispensing, laboratory equipment, analytical, chemical analysis, sampling, life science/biotech, genetic research, gas chromatography, spectrometry, DNA synthesizing, blood analyzing, printing, diagnostic equipment, fermentation, water treatment and more.

SPECIFICATIONS

Valve Type	2-Way Normally-Closed, 2-Way Normally-Open, 3-Way Selector/Diverter
Medium	Air, water, gas, or compatible fluids
Max. Coil Temp. Rating	158°F
Operating Pressure	Vac. to 30 psig (2 bar)
Flow Rate	6 to 60 l/min. air @ 30 psig
Wattage	1.0 to 7.2 watts
Response Time	5 to 20 ms typ.
Connector	18" wire leads (45 cm)
Voltage	12 or 24 VDC (additional options available*)
Ports	#10-32, 1/4-28 UNF, 1/8 NPS or Manifold
Mount	#2-56, #4-40 or Manifold (0.118 thru hole)
Material, Wetted	PTFE body, FKM seals (PEEK body also available*)
CE, RoHS Compliant	

Read more online at clippard.com/link/niv-tds

^{*} Contact Clippard for additional information

STANDARD VALVES

					Standard Valve Dimensions—See Figures 1-5, below						Part Number		
Туре	Orifice	Flow @ 30 psig	Ports	Fig.	A	В	C	D	E	F	G	12 VDC	24 VDC
	0.040"	6 l/min	#10-32	1	0.750"	1.155"	0.500"	#2-56 x 0.094" deep	0.363"	#2-56 x 0.188" deep	n/a	NR1-2-12	NR1-2-24
2-Way, Normally-	0.062"	16 l/min	1/4-28	2	1.000"	1.488"	0.687"	0.450"		n/a	NR2-2-12	NR2-2-24	
Closed	0.093"	38 l/min	1/4-28	4	1.250"	1.863"	0.884"	#4-40 x 0.125" deep	0.500"	#4-40 x 0.250" deep	1.500"	NR3-2-12	NR3-2-24
	0.156"	60 l/min	1/8 NPS	4	1.500"	2.088"	1.125"		0.562"	,,	1.750"	NR4-2-12	NR4-2-24
	0.040"	6 l/min	#10-32	1	0.750"	1.163"	0.500"	#2-56 x 0.094 deep	0.363"	#2-56 x 0.188" deep	n/a	NR1O-2-12	NR1O-2-24
2-Way, Normally-	0.062"	16 l/min	1/4-28	3	1.000"	1.493"	0.687"		0.450"		n/a	NR2O-2-12	NR2O-2-24
Open '	0.093"	38 l/min	1/4-28	5	1.250"	1.814"	0.884"	#4-40 x 0.125" deep	0.500"	#4-40 x 0.250" deep	1.500"	NR3O-2-12	NR3O-2-24
	0.156"	60 l/min	1/8 NPS	5	1.500"	2.039"	1.125"		0.562"		1.750"	NR4O-2-12	NR4O-2-24
	0.040"	6 l/min	#10-32	1	0.750"	1.161"	0.500"	#2-56 x 0.094" deep	0.363"	#2-56 x 0.188" deep	n/a	NR1-3-12	NR1-3-24
3-Way, Selector/	0.062"	16 l/min	1/4-28	3	1.000"	1.492"	0.687"	#4-40 x 0.125" deep	0.450"	#4-40 x 0.250" deep	n/a	NR2-3-12	NR2-3-24
Diverter	0.093"	28 l/min	1/4-28	5	1.250"	1.814"	0.884"		0.500"		1.500"	NR3-3-12	NR3-3-24
	0.156"	60 l/min	1/8 NPS	5	1.500"	2.039"	1.125"		0.562"		1.750"	NR4-3-12	NR4-3-24

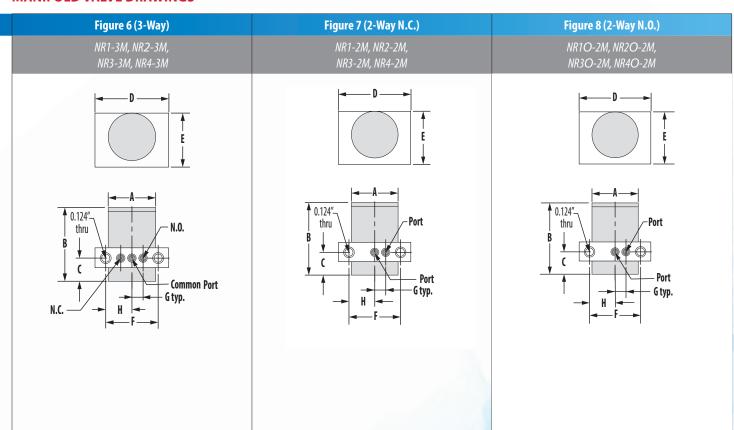

STANDARD VALVE DRAWINGS (NO PEEK OPTION SHOWN)

Figure 1	Figure 2	Figure 3	Figure 4	Figure 5
NR1-2, NR1O-2, NR1-3	NR2-2	NR2O-2, NR2-3	NR3-2, NR4-2	NR3-3, NR3O-2, NR4O-2, NR4-3
D mounting holes (typ.) B	Port Fort Fort Noles (typ.) Port Fort Fort	D mounting holes (typ.) Port (2-Way) N.O.* Inlet or Exhaust N.C.* Inlet or Exhaust F mounting holes (typ.) *3-Way Only	D mounting holes (typ.) Port Fort Fort	Port (2-Way) N.C.* Inlet or Exhaust F mounting holes (typ.) *3-Way Only

MANIFOLD VALVES

	Manifold Dimensions—See Figures 6-8, below									umber
Fig.	А	В		D	E		G	Н	12 VDC	24 VDC
7	0.750"	1.154"	0.362"	1.250"	0.875"	0.875"	0.188"	0.438"	NR1-2M-12	NR1-2M-24
7	1.000"	1.487"	0.450"	1.250"	1.125"	1.000"	0.250"	0.500"	NR2-2M-12	NR2-2M-24
7	1.250"	1.862"	0.500"	1.625"	1.375"	1.250"	0.313"	0.625"	NR3-2M-12	NR3-2M-24
7	1.500"	2.087"	0.563"	1.875"	1.625"	1.500"	0.375"	0.750"	NR4-2M-12	NR4-2M-24
8	0.750"	1.162"	0.362"	1.250"	0.875"	0.875"	0.188"	0.438"	NR1O-2M-12	NR1O-2M-24
8	1.000"	1.491″	0.450"	1.250"	1.125"	1.000"	0.250"	0.500"	NR2O-2M-12	NR2O-2M-24
8	1.250"	1.813"	0.500"	1.625"	1.375"	1.250"	0.313"	0.625"	NR3O-2M-12	NR3O-2M-24
8	1.500"	2.038"	0.563"	1.875"	1.625"	1.500"	0.375"	0.750"	NR4O-2M-12	NR4O-2M-24
6	0.750"	1.162"	0.362"	1.250"	0.875"	0.875"	0.188"	0.438"	NR1-3M-12	NR1-3M-24
6	1.000"	1.491″	0.450"	1.250"	1.125"	1.000"	0.250"	0.500"	NR2-3M-12	NR2-3M-24
6	1.250"	1.813"	0.500"	1.625"	1.375″	1.250"	0.313"	0.625"	NR3-3M-12	NR3-3M-24
6	1.500"	2.038"	0.563"	1.875"	1.625"	1.500"	0.375"	0.750"	NR4-3M-12	NR4-3M-24

MANIFOLD VALVE DRAWINGS

ORDERING INFORMATION

Unit		Orifice / Ports - Flow @ 30 psig	Function	Mount	Voltage
(blank) M-	Imperial Metric	NR1 0.040" - #10-32 - 6 l/min NR2 0.062" - 1/4-28 UNF - 16 l/min NR3 0.095" - 1/4-28 UNF - 38 l/min NR4 0.156" - 1/8" NPS - 60 l/min	-2 2-Way, Normally-ClosedO-2 2-Way, Normally-Open-3 3-Way, Selector / Diverter	(blank) In-Line Threaded M Manifold	-12 12 VDC -24 24 VDC
	Example Par	t No. NR30-2-12	For PEEK clippard.co		

On-Line Configurator Available

ALSO AVAILABLE

Solenoid-Operated PTFE Media Gradient Isolation Valves

Mixing isolation valves combine multiple solenoids into a single compact unit. The valve incorporates up to six separate sources of media into one stream that is integral to a single block. They feature independent

inlets and one common outlet, or one common inlet and multiple independent outlets. Compatible with corrosive and aggressive medium, these valves are useful for solvent selection, stream splitting, flushing, mixing, diverting, blending, indexing and other automated applications.

Read more online at clippard.com/link/nivg

Solenoid-Operated & Pneumatic Pinch Valves

Pinch valves are an excellent alternative to traditional mechanical valves when media contamination is a concern, as they interact with medical grade tubing, and never touch the material being

dispensed. Clippard's compact NPV series offers four styles with multiple size, tubing and pressure options making them ideal for pharmaceutical, laboratory, wastewater, medical, and chemical industries, among others. Features include high flow, low power consumption, high cycle life, quick response and more.

Read more online at clippard.com/link/npv

ADDITIONAL RESOURCES AVAILABLE ONLINE AT CLIPPARD.COM

- 2D & 3D files
- · Product configurators
- Calculators
- · Videos, whitepapers & more
- · Download Clippard's Full-Line Product Catalog
- · Locate your nearest Clippard Distributor
- · Request Technical Help

PROFESSIONALLY DISTRIBUTED BY:

877.578.1639 Crossco.com

877-245-6247 | clippard.com

