

How Can I Quickly Automate Machine Tending?

Use a Collaborative Robot

But seriously, folks...

We're going to be talking about CoBots a lot

CoBots are meant to do roughly human-level tasks.

If your applications need superhuman capability (i.e. speed, payloads, etc.), there are solutions.

But... in today's robotics landscape, the quickest way to retrofit your processes generally involves a Collaborative Robot.

So with that out of the way...

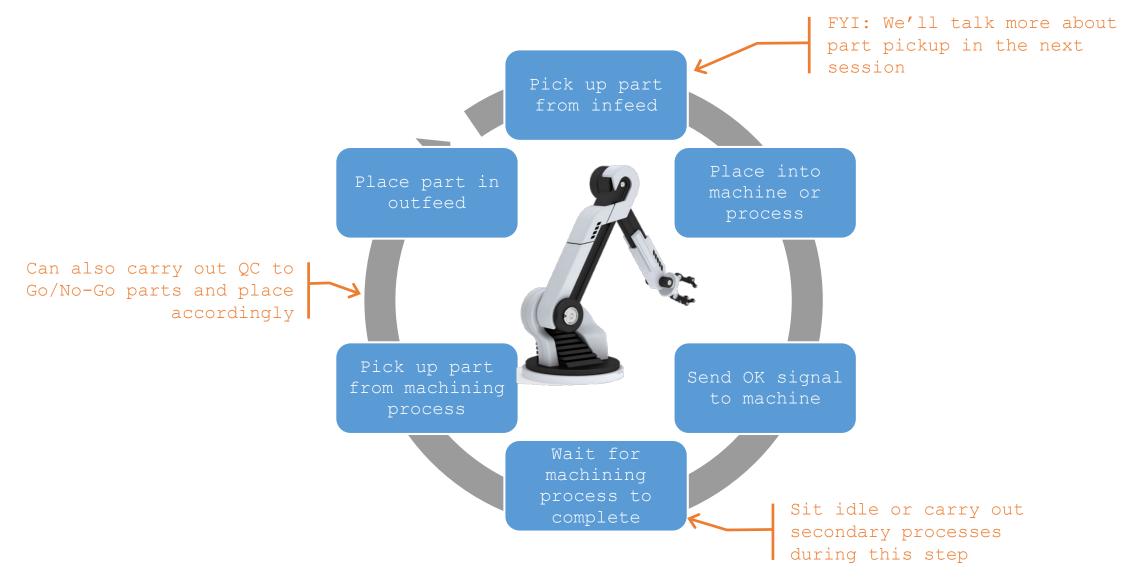
AGENDA

- What is a machine tending solution?
- What are the elements of a machine tending solution?
- Quick Deployment when, why, and how
- Available solutions for quick deployment
- Key takeaways

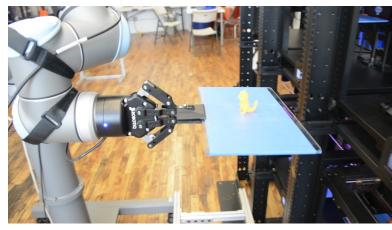
MACHINE TENDING

What is it?

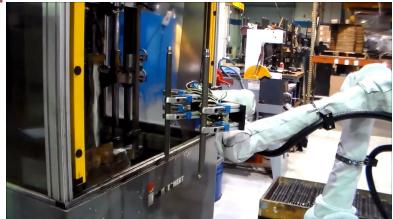
What is Machine Tending?


- Exactly what it sounds like –
 robot loading/unloading machine
- A subset of pick and place applications
- Part handling tends to be simple
 - Hard part (typically) comms and handshaking between MTS and machine

Machine tending is one of the widest and most accessible types of robot applications



Typical Robot Machine Tending Process

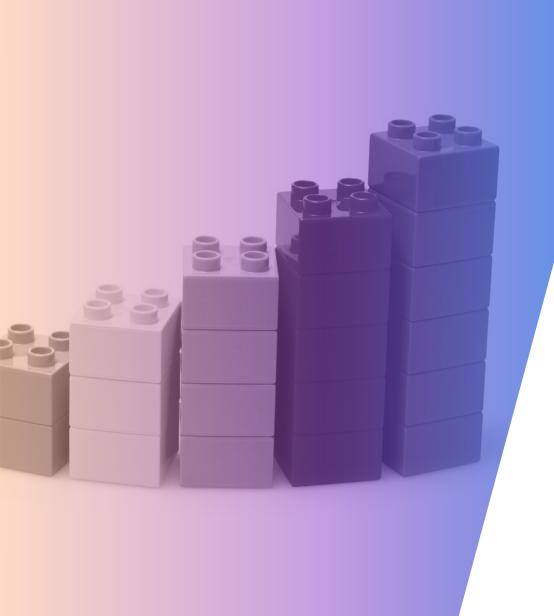


Examples

Voodoo Manufacturing
Tending of 3D Printers

Panther Global Technologies
Hardening Steel Shafts

WALT Machine Inc.


Machining Camera Housings

Why Bother Automating It?

- Finding good people is hard
- Any employee eventually gets sick, injured, takes breaks, etc.
- A robot tending a machine
 - Provides a buffer against employee turnover
 - Removes people from dull, dirty, dangerous work
 - Never takes breaks
 - Does the exact same thing, every single time

Machine Tending Elements

What should you think about?

Hardware/Infrastructure Elements

Robot	 Payload (including EOAT) Cycle time Reach and pose # of Axes required 	Safety	 Risk Assessment required for CoBot Apps Light Curtains Area scanners Pressure mats
Gripper	Single/dual headMechanical grip? Electrical? Pneumatic?Vacuum cupActuation	Footprint/ Layout	Robot work envelopeLocation for robotLocation for infeed/outfeed
Air/Electrical Supply	VoltagePSI requirementQuality of compressed air	Part Presentation	Unfinished parts entering systemFinished Parts leaving systemJigs/FixturesConveyor
Controls/PLC	Communication protocolHandshaking		Nested Trays2D Vision / 3D Vision / Bin Picking

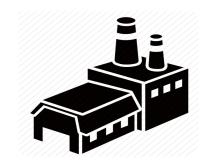
Process Elements

Cycle Time	 Average time it takes to produce one unit Total Production Time / Units Produced 	These two are often used interchangeably, and are the first
Takt Time	Time available to produce one unit Available Time / Units Required	element to consider
Throughput	 Total units produced / Maximum rate of production Often constrained by capacity 	Often a goal to increase throughput by adding capacity with a robot
Setup Time	The time taken to prepare a station or cell for production	
Changeover Time	 Part of setup Converting machine from running one product/process to another Almost never adds value 	Minimizing this increases ROI of automation and quickens payback
Throughput Yield	Capability of a process to produce good product	Robots typically increase yield, as they perform extremely consistently

Financial Elements

Labor Rate / Burn Rate	 How much does each hour of production cost?
Upfront Cost	Exactly what it sounds like
Deployment Time	 How long until the solution is up and running? Pure cost. Delays payback period and reduces ROI.
Return on Investment (ROI)	 Effectiveness of an investment Simple ROI = Gains - Cost Cost Human machine tender salary often the main "gain" pursued
Payback Period	 How long does it take to break even on the investment?

Gains from automation many times go way beyond salary savings. Humans often not even replaced, just repurposed.


Often used interchangeably with ROI.

Facility vs. Process

Each level has different key factors

 Arriving at the "best" solution requires knowing the constraints at each level

Facility Level

- Safety
- Footprint/Layout
- Air/Electrical Supply
- Changeover Time
 - Setup Time
 - Upfront Cost
 - Labor Rate
 - ROI/Payback

Process Level

- Robot
- Part

Presentation

- Controls/PLC
 - EOAT
- Cycle Time
 - Yield
- Throughput
- Deployment Time


Quick Deployment

Challenges and Considerations

When and Why?

- Most important in high mix environments
 - Especially when volumes are not high
 - E.g. job shops, contract manufacturing
- Automation tied to a single machine/product can be difficult to justify (depending on volume and changeover required)

If automation is **redeployable** to different products or processes, suddenly it starts to make sense

How?

- Get your operators involved
 - Your operators are intimately familiar with the details of the process
 - Knowing your process is critical
- Redeployable Automation
 - Collaborative Robot + Adaptive Gripper + Mobile Base = Extremely Flexible
- Focus on ease of use
 - No expertise required = your own operators may be able to do it
 - Reduces deployment time and cost

Solutions for Rapid (Re)Deployment

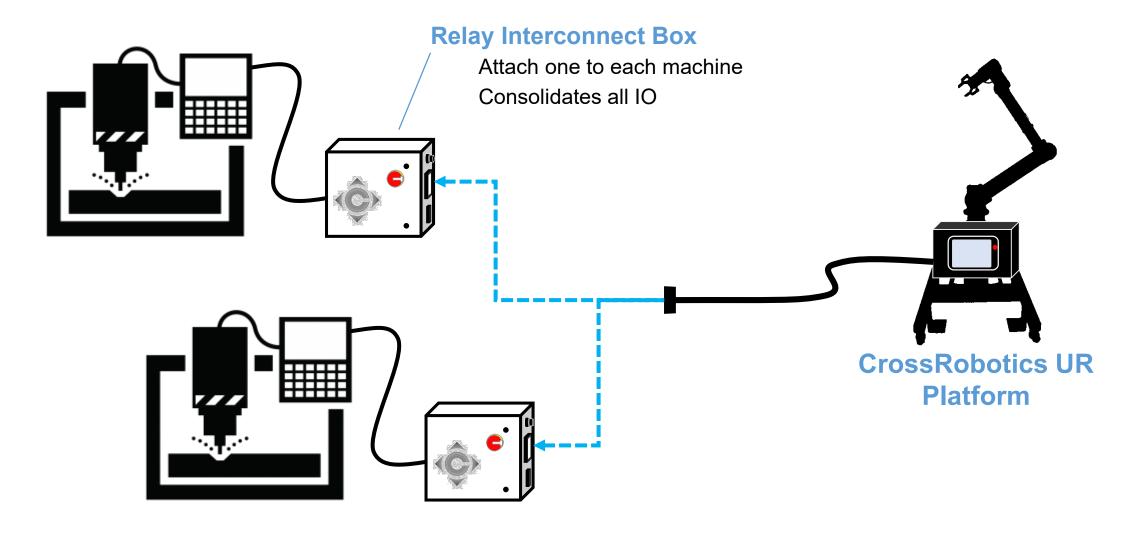
Shameless Plug Section

CrossRobotics UR Platform

UR Collaborative Robot

3, 5, or 10 kg payloads available No guarding for most applications Easy to program

Adaptive Gripper


85mm or 140mm stroke Force/Position/Speed Adjustable Easy to program

-Mobile Pedestal

Can easily be moved between locations
Fixed or adjustable height options
Adjustable feet and lag brackets
Precision Locating Options

CrossRobotics Relay Interconnect Box

Designed to eliminate or minimize many contributors to changeover time

Collaborate Robot: UR3, UR5, or UR10

TeachMate: Programming controls and electrical/air on end of arm

Toolless Quick Change Interface

R-Align: Waypoint recalibration in <5 min

PLC Box makes 24V Digital IO modular

Integrated pneumatics

Forge: Custom programming interface for ease of use

 Can be deployed up to 24x faster than industrial robots for simple maching tending tasks

Key Takeaways

Take it to go

Key Takeaways

- Collaborative Robots are very well suited to retrofitting a machine tending process
- Minimize Changeover Time
- Get your operators involved
- Know your process as detailed as possible
- Focus on flexible and redeployable automation

