

COMPLEX PATH FOLLOWING AND FORCE CONTROL

and how to do it with a robot

www.crossrobotics.com

October 9, 2018

AGENDA

- Force Control Overview
- Path Following Overview
- Force Control + Path Following
- Considerations when using a Robot
- Application Examples
- Key takeaways

FORCE CONTROL

More Than Just Sounding Cool

Force/Torque Control?

- Detect changes in magnitude of forces
- Apply, monitor, and maintain a constant force in one or more degrees of freedom

What Applications use Force Control?

Key Concepts in Force Control

Resolution (N) • Smallest increment picked up by the sensor

Noise (N)
Caused by electrical interactions
Digital sensors are immune to external noise.

- Should be a very small fraction of the nominal resolution

Drift (N) • When the sensor reads a changing force that isn't there

- Can be affected by temp/humidity
- Frequent calibration reduces drift
- Output Rate (Hz) **100Hz** is suitable for most robot applications
 - Finer precision (eg. surgery) needs higher output rates
 - If Control system BW >> Sensor BW... Poor accuracy

Unless your application requires very fine forces or sophisticated control systems, it's generally not worth going beyond the resolution spec.

PATH FOLLOWING

Staying on Track

Path Following?

- Exactly what it sounds like
- More than just Point A to Point B
- Requires constant adjustment of position during movement

What Applications use Path Following?

Answer: Many types.

Key Concepts in Path Following

- Hand-Guiding User guiding the robot TCP by hand
 - Force sensor assists by commanding robot to move in the direction of detected movement
 - Path The trajectory followed by the robot TCP
 - Usually made up of thousands of waypoints
 - Can be created by hand guiding or with software

Control Force • Constant force applied in a specified direction while following a path

- **Process Move** Following a path with a certain speed profile
 - Can be constant speed (Dispense, inspection, etc.)

Complex Path Following with Force Control

Putting them together

Challenges

- Programming from pendant is generally done with discrete waypoints
 - Tough for complex, variable-radius curves

Control forces and tool tip kept at specific angles

- Humans are intuitively pretty good at this (e.g. writing, drawing)
- **BUT** this skill doesn't necessarily translate to programming a robot

Potential Solutions

Program all your waypoints manually

• PROS

• No additional equipment required

• CONS

• You will regret every single thing about doing this

Potential Solutions

Path Recording with a Force/Torque Sensor

• Hand-guiding the TCP to record a path

- Can execute:
 - At recorded speed
 - At constant Speed
 - Relative to an offset

Potential Solutions

Generate paths from software with imported CAD

- **ARTIMINDS** can convert CAD models and sketches to robot paths
- Convert edges to path segments
- Project a path onto a surface
- Generates code in robot's native language

Application Considerations

Things to Consider

Force Sensors ≠ Safety-Rated Devices!

Specialized robots for surgery etc. have been thoroughly evaluated as a whole system

Repeatably Placing Part

 Jigs/fixtures are generally most reliable, but not always feasible or the most efficient

 Can also use 2D camera or force sensor to locate part and apply offset to a path

Reach/Pose Required of Robot

 Especially with offsets applied – executing paths could lead to singularities

Speed control suffers greatly when passing through singular positions

Complexity of Surfaces/Edges

- More complex edges = more time spent perfecting path
- Having CAD model + simulation software can greatly help
- Control forces can also help with unknown or complex surfaces

End of Arm Tooling Factors

- Force Sensor Make and Model
- Dispenser
- Cutting/abrasive Media
- Material dispensed & dispense rate
- Part material & desired finish
- Etc.

APPLICATION EXAMPLES

Buffing of High-Gloss Veneer

Polishing a Muffler

Ultrasonic Inspection

Griding w/ Part Location by Touch

WRAPPING UP

Key takeaways

Key Takeaways

- Sensitive force control tasks (insertion, assembly, etc.) may require a Force/Torque Sensor
- Force/Torque Sensors allow control over not only force-sensitive tasks, but a lot of flexibility on path-based tasks as well
- Software such as Artiminds makes complex multi-DOF path generation considerably easier and quicker to implement

THANK YOU www.crossrobotics.com

MANAN BANERJEE

(704) 723-2036

manan.banerjee@crossco.com

www.crossrobotics.com

October 9, 2018